Tensor Product Generalized ADI Methods for Elliptic Problems

نویسنده

  • Wayne R. Dyksen
چکیده

We collsider IlOlving separable, second order. linear elliptic partial differential equations. If an elliptic problem is separable, then, for certain discretizations. the matrices involved in the corresponding discrete problem can be expressed in terms of tensor products of lower order matrices. In the most general case. the discrete problem can be written in the form (Al@Bz +81i&lA,2)C ==F. We present a new Tensor Product Generalized AltematLog Dirc~c. tion Implicit (TPGADI) iterative method for solving such discrete problems. We prove convergence and establish computational etriciency. The TPGADI method is applied to the Hermite bicubic collocation equations. We conclude that the TPGADI method is an effecti.ve tool for solving the discrete elliptic problems arising from a large class o[ elliptic problems. Tensor Product Generalized ADI Methods for Elliptie Problems

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Proper Generalized Decomposition for the solution of elliptic problems in abstract form by using a functional Eckart-Young approach

The Proper Generalized Decomposition (PGD) is a methodology initially proposed for the solution of partial di erential equations (PDE) de ned in tensor product spaces. It consists in constructing a separated representation of the solution of a given PDE. In this paper we consider the mathematical analysis of this framework for a larger class of problems in an abstract setting. In particular, we...

متن کامل

The Generalized Wiener Polarity Index of some Graph Operations

Let G be a simple connected graph. The generalized polarity Wiener index of G is defined as the number of unordered pairs of vertices of G whose distance is k. Some formulas are obtained for computing the generalized polarity Wiener index of the Cartesian product and the tensor product of graphs in this article.

متن کامل

Direct tensor-product solution of one-dimensional elliptic equations with parameter-dependent coefficients

We consider a one-dimensional second-order elliptic equation with a high-dimensional parameter in a hypercube as a parametric domain. Such a problem arises, for example, from the Karhunen Loève expansion of a stochastic PDE posed in a onedimensional physical domain. For the discretization in the parametric domain we use the collocation on a tensor-product grid. The paper is focused on the tenso...

متن کامل

Piecewise tensor product wavelet bases by extensions and approximation rates

In this chapter, we present some of the major results that have been achieved in the context of the DFG-SPP project “Adaptive Wavelet Frame Methods for Operator Equations: Sparse Grids, Vector-Valued Spaces and Applications to Nonlinear Inverse Problems”. This project has been concerned with (nonlinear) elliptic and parabolic operator equations on nontrivial domains as well as with related inve...

متن کامل

Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces

Tensor-based methods are receiving a growing interest in scienti c computing for the numerical solution of problems de ned in high dimensional tensor product spaces. A family of methods called Proper Generalized Decompositions methods have been recently introduced for the a priori construction of tensor approximations of the solution of such problems. In this paper, we give a mathematical analy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013